3		SHRI SHANKARA	CHARYA INSTITUTE OF PROFESSIONAL MANAGEMI	ENT AND T	ECHNOLOGY		
			DEPARTMENT OF MECHANICAL ENGINEERI	NG			
	(Class Test – ISession- Jan – June 2020Semester- 4thSubject- Applied Thermodynamics			Month- February		
	S	Semester- 4 th Subject- Applied Thermodynamics					
	Coc	le – 337453(37)	Time Allowed: 2 hrs	Max M	Aarks: 40		
	Note: -	1. Students are Requ	ired to focus on question and marks columns only				
	Q. No		Questions	Marks	Levels of Bloom's taxonomy	CO	
		Unit – I ((Question A is compulsory, attempt any two parts ou	it of B, C a	ind D)		
	1.A	Define the M.E.P expression for sar	. (Mean Effective Pressure) and derive the me.	04	Remembering	CO1	
-	1.B	Derive the therma cycle with depicti	al efficiency expression for compression ignition on on P-V & T-S diagram	08	Applying	CO1	
	1.C	In a constant volu compression is 15 beginning of com in the cycle is 195 (i) Co (ii) Th (iii) W Take Y for	tume 'Otto cycle' the pressure at the end of 5 times than at the start, the temperature of air at the pression is 38 °C and maximum temperature attained 50 °C. Determine: compression ratio. mermal efficiency of the cycle. York done. r air = 1.4.	08	Applying	CO1	
2	1.D	 (i) An engine wor 2, 3 and 4, has upper maximum work p temperature is give (ii) If an engine we K and 310 K, find assuming the circular 	rking on Otto cycle, in which the salient points are 1, per and lower temperature limits T ₃ and T ₁ . If the er kg of air is to be done, show that the intermediate ren by. $T_2 = T_4 = \sqrt{T_1 T_3}.$ Forks on Otto cycle between temperature limits 1450 the maximum power developed by the engine alation of air per minute as 0.38 kg.	08	Applying	CO1	

	Unit – II(Question A is compulsory, attempt any two parts out	of B, C	and D)	
2.A	What is volumetric efficiency & explain it's significance.	04	Remembering	CO2
2.B	 An air compressor takes in air at 1 bar and 20°C and compresses it according to law pv^{1.2} = constant. It is then delivered to a receiver at a constant pressure of 10 bar. R = 0.287 kJ / kg K. Determine: (i) Temperature at the end of compression. (ii) Work done and heat transferred during compression per kg of air. 	08	Applying	CO2
2.C	Derive the expression for work for a single cylinder, single acting compressor with clearance.	08	Applying	CO2
2.D	A single-stage, double- acting compressor has a free air delivery (F.A.D.) of 14 m ³ /min. measured at 1.013 bar and 15 °C. The pressure and temperature in the cylinder during induction are 0.95 bar 32 °C. The delivery pressure is 7 bar and index of compression and expansion, n = 1.3. The clearance volume is 5% of the swept volume. Calculate: (i) Indicated power required. (ii) Volumetric efficiency.	08	Applying	CO2

S	HRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANACEN	TENT AND	TECHNOLOV	
	DEPARTMENT OF MECHANICAL ENGINEERIN	IG	TECHNOLOU	<u>з Ү</u>
	Class Test – I Session- Jan – June 2020	Mont	h- February	
Sem- 4 th Subject- Numerical Analysis & Computer Pr		gramming	y	
Code -	- 337455(37) Time Allowed: 2 hrs	Max	Marks: 40	
Note:	 1. Students are Required to focus on question and marks columns only. 2. In Unit I & II, Question A is compulsory and attempt any two from B, C 	& D.		
Q. No	Questions		Levels of Bloom's taxonomy	СО
	Unit – I			
1.A	What is the role of Numerical Analysis in the field of research and development?	4	Understand	CO1
1.B	Find the Negative root of $x^3-4x+9=0$ with the help of Bisection method.	8	Apply	CO1
1.C	Find the positive root of $xe^x = 2$ by using method of false position.	8	Apply	CO1
1.D	A bacteria concentration in a reservoir varies as $0.5 = 4e^{-2t} + e^{-0.1t}$ using Newton Raphson Method , Calculate the time required t for bacteria concentration.	8	Apply	CO1

		Unit – II			
2	2.A	Find out the iterative formula for the value of $\mathbf{n}^{0.5}$ by using Newton Raphson Method.	4	Apply	CO1
	2.B	Solve the following system of equations by Gauss Seidel Method – x + y + 54z = 110 27x + 6y - z = 85 6x + 15y + 2z = 72	8	Apply	CO2
	2.C	Solve the following system of equations by Gauss Elimination Method – x + 2y + z = 3 2x + 3y + 3z = 10 3x - 15y + 2z = 13	8	Apply	CO2
	2.D	Solve the following system of equations by Gauss Jordan Method – 10 x + y + z = 12 2x + 10 y + z = 13 x + y + 5z = 7	8	Apply	CO2

1	SHRI SHANKARA	CHARYA INSTITUTE OF PROFESSIONAL MANAGEM	IENT AND	TECHNOLOG				
DEPARTMENT OF MECHANICAL ENGINEERING								
	Class Test – I Session- Jan – June 2020			h- February				
	Sem- 4 th	Subject- Mechanics of solids -II	WOII	II- I Colual y				
Co	Code - 337452(37) Time Allowed: 2 hrs		Max	Marks: 40	-			
Note:	- 1. In Unit I & II, Qu	estion A is compulsory and attempt any two from B, C & I).	Warks. 40				
Q. No	Q. No Questions		Marks	Levels of Bloom's taxonomy	со			
		Unit – I						
1.A	Explain (a) Proof resilience (b) Strain energy due to torsion			Remember	CO1			
1.B	State and prove Castigliano's theorem			Understanding	CO1			
1.C	A 500 mm x 180 mm of 20 kN is applied of bending stress induce	mild steel beam is simply supported on span of 6 m. A load n the middle from height of 12.5 mm. Find the deflection and d. Take $E = 200$ GPa I= 4.522 x 10 ⁸ mm4	8	Applying	CO1			
1.D	For structure shown in	n figure find the horizontal and vertical deflection of point A P B AB - Quadrant of circle (radius r)	8	Applying	CO1			

		Unit – II			
	2.A	Define statically indeterminate beam with two examples	4	Remember	
,	2.B	For fixed beam shown in figure find the support reactions, fixing moments and draw bending moment diagram $\frac{25 \text{ kN/m}}{3 \text{ m}} + \frac{120 \text{ kN}}{1.5 \text{ m}}$	8	Applying	CO2
	2.C	A fixed beam having length of 6 m is subjected to point load of 200 kN at 2 m from left support and 150 kN at 2 m from right support. find the support reactions, fixing moments and draw bending moment diagram		Applying	CO2
	2.D	A fixed beam having length of 10 m is subjected to point load of 180 kN at 3 m from left support and clockwise couple of 160 kNm at 4 m from right support. find the support reactions, fixing moments and draw bending moment diagram		Applying	CO2

S	HRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAG	EMENT AND	TECHNOLO	GY
	DEPARTMENT OF MECHANICAL ENGINEEI	ING		
-	Class Test – I Session- Jan – June 2020	Mont	h- February	
	Sem- 4 th Subject- MS-I			
Code	-337456(37) Time Allowed: 2 hrs	Max	Marks: 40	
Note:	Question 1 is compulsory, attempt any two from 2, 3,4.			
Q. No	Q. No Questions		Levels of Bloom's taxonomy	СО
	Section - I			
1.A	1.A Why draft is provided on pattern? 1.B Explain the gating system with diagram. 1.C Discuss the different type of casting defects and its causes and remedies.		R	CO1
1.B			U	CO1
1.C			U	CO2
1.D	Discuss the following A) Hot chamber die casting. B) Cold chamber die casting	8	U	CO2

2.A	Define welding process.	4	R	CO3
2.B	Write short notes on (any two) a) Investment casting b) Shell molding c.) Properties of molding sand 	8	U	CO2
2.C	Discuss Oxy acetylene welding and types of flame.	8	U	CO3
2.D	What are Allowances? Explain different types of Allowances.	8	U	CO3

		DEPARTMENT OF MECHANICAL ENGINEERING		
C	lass Test – I	Session- January – June 2020 Month- Febru	ary	
$\frac{\text{Class Test} - 1}{\text{Semester- 4}^{\text{th}}}$ $\frac{\text{Code} - 337454(37)}{\text{Code} - 337454(37)}$		Subject- Kinematics of Machines		
Cod	e – 337454(37)	Time Allowed: 2 hrs Max Marks:	40	
Note: - Students are required to focus on question and marks columns		ired to focus on question and marks columns only.		
Q. No		Questions Marks Bloo taxon	ls of m's omy	С
	Unit -	- I (Q A is Compulsory attempt any two out of B.C and D)		
1.A	In a slider crank mec counterclockwise direc 60^{0} from inner dead ce (i) Velocity of slider (i connecting rod extend rod having least absolu	hanism, Crank is 480mm long and rotates at 20 rad/s in etion. Length of connecting rod is 1.6m. When crank turns intre (IDC), determine i) Velocity of point E located at a distance of 450mm on the ed (iii) Position and velocity of point F on the connecting inter velocity.	ying	С
1.B	The lengths of variou AC=600mm, CQ=QI crank OA rotates at velocity of the slider turned an angle of 45 ^o	s links of a mechanism shown in figure are: OA=150mm, D=145mm, CD=125mm, BD=500mm, OQ=625mm. The 60rpm in the counter clockwise direction. Determine the B and the angular velocity of link BD when the crank has with the vertical.	lying	C
1.C	Figure shows a med CD=250mm. The c Determine the (i) vel (Figure in Next Page)	hanism in which $OA=QC=100$ mm, $AB=QB=300$ mm and rank OA rotates at 150 rpm in the clockwise direction. beity of slider at D (ii)angular velocity of links QB and AB. $300 - 35^{\circ}$ $300 - 35^{\circ}$ 300 - 100 40 - 230 50 - 280 - 100 10 - 4p	olying	(

	Unit – II (Attempt any one out of A and B)			
2.A	A mechanism of a crank and slotted lever quick return motion is shown in Figure. If the crank rotates counter clockwise at 120 rpm, determine for the configuration shown, the velocity and acceleration of the ram D. Also determine the angular acceleration of the slotted lever. Crank AB = 150 mm; Slotted arm OC = 700 mm and link CD = 200 mm.	14	Applying	CO2
2.B	PQRS is a four bar chain with link PS fixed. The lengths of the links are PQ=62.5mm, QR=175mm, RS =112.5mm and PS=200mm. Crank PQ rotates at 10rad/s clockwise. Draw velocity and acceleration diagrams when angle QPS= 60° and Q and R lie on same side of PS. Find angular velocity and angular acceleration of link QR and RS.	14	Applying	CO2

	SHRI SHANKARACH	ARYA INSTITUTE OF PROFESSIONAL MANAG	GEMENT AND	TECHNOLOGY	ł
		DEPARTMENT OF MECHANICAL ENGIN	EERING		
(Class Test – I Session- Nov-Dec 2019-20		Mont	Month- February	
Sem- 4 th Subject- Fluid Mechanics					
Со	Code - 337451(37) Time Allowed: 2 hrs		Max	Marks: 40	
Note: -	1. Students are Require 2. In Unit I & II. Oues	ed to focus on question and marks columns only. tion A is compulsory and attempt any two from B. (C & D.		
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со
		Unit – I			
1.A	Define the Newton's	aw of viscosity and Buoyancy force.	4	Understanding	1
1.B	Explain the stability c submerged body.	ondition of completely submerged and partially	8	Understanding	2
1.C	A circular opening, 3n disc of 3m diameter w Calculate: (i)The force on the dis (ii) The torque require position when the hea	n diameter in a vertical side of the tank is closed l which can rotate about an horizontal diameter. ac, and ad to maintain the disc in equilibrium in the vertic ad of water above the horizontal diameter is 4m.	oy a sal	Applying	2
1.D	In Fig an inverted diffe B which convey water manometer readings	erential manometer is connected to two pipes A The fluid in manometer is oil of sp.gr. 0.8. For shown in the figure, Find the pressure differe OIL of Sp. gr. 0.8 X 30 cm B C B C B C C C C C C C C C C C C C	and the nce 8	Applying	1

	Unit – II	and the second		
2.A	. Explain Compressibility and effect of temperature on viscosity.	4	Remember	1
2.B	Derive an expression for Hydrostatic force and position of Centre of Pressure for vertical plane surface.	8	Understanding	2
2.C	A cubical block weighing 4.5 N and having a 40 cm edge is allowed to slide down an inclined plane surface making an angle of 300 with the horizontal on which there is a uniform layer of oil 0.005 cm thick. If the expected steady state velocity of the block is 12.5 cm/s, determine the viscosity of the oil. Also express the kinematics viscosity in stokes if the oil has a mass density 800 kg/m3.	8	Applying	2
2.D	A block of wood of specific gravity 0.7 floats in water Determine the meta-centric height of the block if its size is 2m×1m×0.8m. State whether the equilibrium is stable or unstable.	8	Applying	2

	SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL N	IANAGEMEN	NT AND TI	ECHNOLOGY	
	DEPARTMENT OF MECHANICAL EN	IGINEERIN	G		
Class Test – I Session- Jan – June 2020		Month- February			
	Semester- 4 th Subject- Applied Thermodynam	nics			
Co	de – 337453(37) Time Allowed: 2 hrs		Max N	Marks: 40	
Note:	- 1. Students are Required to focus on question and marks columns onl	У			
Q. No	Questions		Marks	Levels of Bloom's taxonomy	СС
	Unit – I (Question A is compulsory, attempt any tw	vo parts out	of B, C a	and D)	
1.A	Define the M.E.P. (Mean Effective Pressure) and derive the expression for same.		04	Remembering	со
1.B	Derive the thermal efficiency expression for compression ignition cycle with depiction on P-V & T-S diagram		08	Applying	со
1.C	In a constant volume 'Otto cycle' the pressure at the end of compression is 15 times than at the start, the temperature of a beginning of compression is 38 °C and maximum temperature in the cycle is 1950 °C. Determine: (i) Compression ratio. (ii) Thermal efficiency of the cycle. (iii) Work done. Take Y for air = 1.4.	air at the e attained	08	Applying	СО
1.D	(i) An engine working on Otto cycle, in which the salient po 2, 3 and 4, has upper and lower temperature limits T ₃ and T ₁ . maximum work per kg of air is to be done, show that the inter- temperature is given by. $T_2 = T_4 = \sqrt{T_1 T_3}$. (ii) If an engine works on Otto cycle between temperature lim K and 310 K, find the maximum power developed by the enge	ints are 1, If the prmediate nits 1450 gine	08	Applying	СО