DEPARTMENT OF MECHANICAL ENGINEERING

	Class Test - I	Session- Jan - June 2020	Month- February		
	Semester- $4^{\text {th }}$	Subject- Applied Thermodynamics			
	de - 337453(37)	Time Allowed: 2 hrs	Max Marks: 40		
Note: - 1. Students are Required to focus on question and marks columns only					
$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$		Questions	Marks	Levels of Bloom's taxonomy	CO

Unit-I (Question A is compulsory, attempt any two parts out of B, C and D)

1.A	Define the M.E.P. (Mean Effective Pressure) and derive the expression for same.	04	Remembering	CO1
1.B	Derive the thermal efficiency expression for compression ignition cycle with depiction on P-V \& T-S diagram	08	Applying	CO1
1.C	In a constant volume 'Otto cycle' the pressure at the end of compression is 15 times than at the start, the temperature of air at the beginning of compression is $38^{\circ} \mathrm{C}$ and maximum temperature attained in the cycle is $1950^{\circ} \mathrm{C}$. Determine: (i) Compression ratio. (ii) Thermal efficiency of the cycle. (iii) Work done. Take Y for air $=1.4$.	08	Applying	CO1
1.D	(i) An engine working on Otto cycle, in which the salient points are 1, 2,3 and 4 , has upper and lower temperature limits T_{3} and T_{1}. If the maximum work per kg of air is to be done, show that the intermediate temperature is given by. $\mathrm{T}_{2}=\mathrm{T}_{4}=\sqrt{T_{1} T_{3}} .$ (ii) If an engine works on Otto cycle between temperature limits 1450 K and 310 K , find the maximum power developed by the engine assuming the circulation of air per minute as 0.38 kg .	08	Applying	CO1

Unit-II(Question A is compulsory, attempt any two parts out of B, C and D)

2.A	What is volumetric efficiency \& explain it's significance.	04	Remembering	CO2
2.B	An air compressor takes in air at 1 bar and $20^{\circ} \mathrm{C}$ and compresses it according to law $\mathrm{pv}^{1.2}=$ constant. It is then delivered to a receiver at a constant pressure of 10 bar . $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Determine: (i) Temperature at the end of compression. (ii) Work done and heat transferred during compression per kg of air.	08	Applying	CO2
2.C	Derive the expression for work for a single cylinder, single acting compressor with clearance.	08	Applying	CO2
2.D	A single-stage, double- acting compressor has a free air delivery (F.A.D.) of $14 \mathrm{~m}^{3} / \mathrm{min}$. measured at 1.013 bar and $15^{\circ} \mathrm{C}$. The pressure and temperature in the cylinder during induction are 0.95 bar $32^{\circ} \mathrm{C}$. The delivery pressure is 7 bar and index of compression and expansion, $\mathrm{n}=1.3$. The clearance volume is 5% of the swept volume. Calculate: (i) Indicated power required. (ii) Volumetric efficiency.	08	Applying	CO 2

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - I		Session- Jan - June 2020	Month- February		
Code - 337455(37)		Time Allowed: 2 hrs	Max Marks: 40		
Note: - 1. Students are Required to focus on question and marks columns only. 2. In Unit I \& II, Question A is compulsory and attempt any two from B, C \& D.					
$\underset{\text { No }}{\stackrel{\text { Q }}{2}}$		Questions	Marks	Levels of Bloom's taxonomy	CO
Unit - I					
1.A	What is the role of Numerical Analysis in the field of research and development?		4	Understand	CO1
1.B	Find the Negative root of $\mathbf{x}^{3}-4 x+9=0$ with the help of Bisection method.		8	Apply	CO1
1.C	Find the positive root of $\mathrm{xex}^{\mathrm{x}}=2$ by using method of false position.		8	Apply	CO1
1.D	A bacteria concentration in a reservoir varies as $0.5=4 \mathrm{e}^{-2 \mathrm{t}}+\mathrm{e}-0.1 \mathrm{t}$ using Newton Raphson Method, Calculate the time required t for bacteria concentration.		8	Apply	CO1

Unit - II				
2.A	Find out the iterative formula for the value of $\mathbf{n}^{0.5}$ by using Newton Raphson Method.	4	Apply	CO1
2.B	Solve the following system of equations by Gauss Seidel Method - $\begin{gathered} x+y+54 z=110 \\ 27 x+6 y-z=85 \\ 6 x+15 y+2 z=72 \end{gathered}$	8	Apply	CO2
2.C	Solve the following system of equations by Gauss Elimination Method - $\begin{aligned} & x+2 y+z=3 \\ & 2 x+3 y+3 z=10 \\ & 3 x-15 y+2 z=13 \end{aligned}$	8	Apply	CO2
2.D	Solve the following system of equations by Gauss Jordan Method - $\begin{gathered} 10 x+y+z=12 \\ 2 x+10 y+z=13 \\ x+y+5 z=7 \end{gathered}$	8	Apply	CO2

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - I		Session- Jan - June 2020	Month- February		
	Sem- $4^{\text {th }}$	Subject-MS-I			
Code - 337456(37)		Time Allowed: 2 hrs	Max Marks: 40		
Note: Question 1 is compulsory, attempt any two from 2, 3,4.					
Q.		Questions	Marks	Levels of Bloom's taxonomy	CO

Section - I

1.A	Why draft is provided on pattern?	4	R	CO 1
1.B	Explain the gating system with diagram.	8	U	CO 1
1.C	Discuss the different type of casting defects and its causes and remedies.	8	U	CO 2
1.D	Discuss the following A) Hot chamber die casting. B) Cold chamber die casting	8	U	CO 2

Section - II				
2.A	Define welding process.	4	R	CO 3
2.B	Write short notes on (any two) a) Investment casting b) Shell molding c.) Properties of molding sand	8	U	CO 2
2.C	Discuss Oxy acetylene welding and types of flame.	8	U	CO 3
2.D	What are Allowances? Explain different types of Allowances.	8	U	CO3

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - I	Session- January - June 2020	Month- February
Semester- $4^{\text {th }}$	Subject- Kinematics of Machines	
Code $-337454(37)$	Time Allowed: 2 hrs	Max Marks: 40

Note: - Students are required to focus on question and marks columns only.

Q. No	Questions	Marks	Levels of Bloom's taxonomy	CO

Unit -I (Q A is Compulsory attempt any two out of B.C and D)

1.A	In a slider crank mechanism, Crank is 480 mm long and rotates at $20 \mathrm{rad} / \mathrm{s}$ in counterclockwise direction. Length of connecting rod is 1.6 m . When crank turns 60° from inner dead centre (IDC), determine (i) Velocity of slider (ii) Velocity of point E located at a distance of 450 mm on the connecting rod extended (iii) Position and velocity of point F on the connecting rod having least absolute velocity.	06	Applying	CO 1
$1 . \mathrm{B}$	The lengths of various links of a mechanism shown in figure are: $\mathrm{OA}=150 \mathrm{~mm}$, $\mathrm{AC}=600 \mathrm{~mm}, \mathrm{CQ}=\mathrm{QD}=145 \mathrm{~mm}, \mathrm{CD}=125 \mathrm{~mm}, \mathrm{BD}=500 \mathrm{~mm}, \mathrm{OQ}=625 \mathrm{~mm}$. The crank OA rotates at 60 rpm in the counter clockwise direction. Determine the velocity of the slider B and the angular velocity of link BD when the crank has turned an angle of 45° with the vertical.	10	Applying	CO 1
1.C	Figure shows a mechanism in which $\mathrm{OA}=\mathrm{QC}=100 \mathrm{~mm}, \mathrm{AB}=\mathrm{QB}=300 \mathrm{~mm}$ and $\mathrm{CD}=250 \mathrm{~mm}$. The crank OA rotates at 150 rpm in the clockwise direction. Determine the (i) velocity of slider at D (ii)angular velocity of links $Q B$ and $A B$. (Figure in Next Page)	10	Applying	COl

Unit-I

In the mechanism shown in figure,angular velocity of crank OA is 15
radian/sec the slider at E is constrained to move at 2.5m/s downwards. The
motion of both the sliders is vertical and the link BC is horizontal in the
position shown. Determine: (i) Rubbing velocity at B if the pin diameter is
15 mm (ii) Velocity of slider D.

Unit - II (Attempt any one out of A and B)

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

Unit-I

1.A	Define the Newton's law of viscosity and Buoyancy force.	4	Understanding	1
1.B	Explain the stability condition of completely submerged and partially submerged body.	8	Understanding	2
1.C	A circular opening, 3 m diameter in a vertical side of the tank is closed by a disc of 3 m diameter which can rotate about an horizontal diameter. Calculate: (i)The force on the disc, and (ii) The torque required to maintain the disc in equilibrium in the vertical position when the head of water above the horizontal diameter is 4 m .	8	Applying	2
1.D	In Fig an inverted differential manometer is connected to two pipes A and B which convey water. The fluid in manometer is oil of sp.gr. 0.8. For the manometer readings shown in the figure, Find the pressure difference between A and B.	8	Applying	1

Unit-II				
2.A	Explain Compressibilityandeffect of temperature on viscosity.	4	Remember	1
2.B	Derive an expression for Hydrostatic force and position of Centre of Pressure for vertical plane surface.	8	Understanding	2
2.C	A cubical block weighing 4.5 N and having a 40 cm edge is allowed to slide down an inclined plane surface making an angle of 300 with the horizontal on which there is a uniform layer of oil 0.005 cm thick. If the expected steady state velocity of the block is $12.5 \mathrm{~cm} / \mathrm{s}$, determine the viscosity of the oil. Also express the kinematics viscosity in stokes if the oil has a mass density $800 \mathrm{~kg} / \mathrm{m} 3$.	8	Applying	2
2.D	A block of wood of specific gravity 0.7 floats in water Determine the meta-centric height of the block if its size is $2 \mathrm{~m} \times 1 \mathrm{~m} \times 0.8 \mathrm{~m}$. State whether the equilibrium is stable or unstable.	8	Applying	

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - I	Session- Jan - June 2020	Month- February		
Semester- 4				

Unit - I (Question A is compulsory, attempt any two parts out of B, C and D)

1.A	Define the M.E.P. (Mean Effective Pressure) and derive the expression for same.	04	Remembering	CO1
1.B	Derive the thermal efficiency expression for compression ignition cycle with depiction on P-V \& T-S diagram	08	Applying	CO1
1.C	In a constant volume 'Otto cycle' the pressure at the end of compression is 15 times than at the start, the temperature of air at the beginning of compression is $38^{\circ} \mathrm{C}$ and maximum temperature attained in the cycle is $1950^{\circ} \mathrm{C}$. Determine: (i) Compression ratio. (ii) Thermal efficiency of the cycle. (iii) Work done. Take Y for air $=1.4$.	08	Applying	CO1
1.D	(i) An engine working on Otto cycle, in which the salient points are 1, 2,3 and 4 , has upper and lower temperature limits T_{3} and T_{1}. If the maximum work per kg of air is to be done, show that the intermediate temperature is given by. $\mathrm{T}_{2}=\mathrm{T}_{4}=\sqrt{T_{1} T_{3}} .$ (ii) If an engine works on Otto cycle between temperature limits 1450 K and 310 K , find the maximum power developed by the engine assuming the circulation of air per minute as 0.38 kg .	08	Applying	CO1

